
Ostitch: MIR applied to musical instruments

Abram Hindle
Software Engineering Group

University of Victoria
abez@uvic.ca

ABSTRACT
The paper discusses the use of MIR in computer mu-
sic instruments. This paper proposes and implements a
performance time MIR based instrument (Ostitch) that
produces “audio mosaics” or “audio collages”. Buffer-
ing, overlapping and stitching (audio concatenation) algo-
rithms are discussed – problems around these issues are
evaluated in detail. Overlapping and mixing algorithms
are proposed and implemented.

Keywords: Collage, Overlapping, Mosaicing

1 INTRODUCTION
Music Information Retrieval (MIR) has been commonly
used for querying repositories of sound and music. One
aspect of MIR that has been somewhat explored has been
applying MIR techniques to live music performances. Of-
ten MIR is applied to conventional instruments (Kapur
et al., 2004b) or voice samples (Kapur et al., 2004a).

What I propose in this paper is an instrument which
uses MIR technology to produce and replace sound from
a corpus other sounds. This instrument is controlled by
sound much like a filter but unlike a classical filter it can
learn about the sound coming in and use that sound to pro-
duce new sounds. The main instrument demonstrated in
this paper is a performance-time (real-time for music per-
formance purposes) audio collager. Using either a corpus
of sound or a growing corpus of incoming sound, simi-
lar sounds are queried and played instead of the original
signal. An instrument like the collager (Ostitch) attempts
to imitate or use the control signal as “inspiration” for its
decisions.

MIR can be used to improve human computer inter-
action with a computer , especially those interactions of
skilled musicians. A musician could play a tune to query
for a song or use their instrument to control a computer in-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

strument. Interfaces could be based on simple pitch track-
ers to more complex feature trackers which use domain
specific features to describe the instrument input (Kapur
et al., 2004b).

MIR can also be used to provide cost effective input
to a computer music instrument. A user can simply use a
microphone and their own voices or sound making tools
to provide an input signal (Kapur et al., 2004a). The voice
is an excellent source because it can produce a very wide
range of sounds and noises, from vowels and consonants
to throat and mouth sounds. The voice is also a very natu-
ral instrument for most people.

The inputs commonly associated with a computer, the
keyboard and mouse, often are not expressive enough to
replicate the input a user might provide with a real instru-
ment. Thus why not let the user use the real instrument
with all of its expressiveness to control another instru-
ment?

1.1 Related Work

Schwarez has produced a PhD thesis about audio concate-
nation (Schwarz, 2004), thus many of these related works
are extracted from his thesis:

• PlunderPhonics , by John Oswald is a thesis and a
project based around the idea that music is just as
usable as sound for producing music, unfortunately
music is heavily bound by copyright. Oswald argues
that instruments used to produce sound but now if
one uses a music player device as an instrument (like
a turntable) it confuses the distinction between sound
and music. Oswald argues for the “plundering” of
other sound to compose and produce new sound. Re-
gardless, DJing and music aggregation are very sim-
ilar to sound concatenation (Oswald, 1999).

• Manipulation and resynthesis with natural grain by
Hoskinson , discusses granular synthesis in respect
to music concatenation. Samples of 1024 bytes were
used with an overlap of 256 samples (in section 3.2
I discuss my overlapping algorithm, this algorithm
here would be considered to be an instance of my
algorithm where n = 8) (Hoskinson., 2002).

• SoundMosaicing by Steven Hazel , is an implemen-
tation of a sound mosiacer. Hazel focused on try-
ing to achieve near perfect reproduction of sound

through variable size samples. One example pro-
vided was the replacement of screaming chimp sam-
ples with George W. Bush samples. Hazel does not
focus much on the stitching which makes many of
the pops noticeable (Hazel, 2001).

• Musical Mosaicing by Zils and Pachet , deals with
concatetive sound synthesis and constraints used in
matching and choosing samples. The focus in this
paper was to make a more musical collage. In that
respect Zils and Pachet tried to better match the pitch
of the music they were imitating through pitch choos-
ing constraints (Zils and Pachet, 2001).

• George Tzanetakis mentioned audio mosaicing but
did not provide much detail about it (Tzanetakis,
2002).

• La Legende des siecles 2002 (Schwarz, 2004), was
described by Schwarz as a performance art piece in
2002 where the performers used a corpus of audio
samples which replaced their audio output; the sam-
ples were also pitch shifted and the volumes changed.

• Mosievius by Lazier and Cook is the first paper to
actually discuss in any sort of detail interactive “mo-
saicing”. Mosievius had the neat idea of mosaicing
based upon features rather than input sounds. With
the “sound sieve” one could traverse a feature space
by playing arbitrary samples whose features were
similar to the those along the path (Lazier and Cook,
2003).

• Catepillar is an offline music concatenation system
which focused on finding the best path in a corpus
to reconstruct the music. Data-Driven Concatetive
Sound Synthesis was a PhD thesis written by Diemo
Schwarz about his engine. Schwarz went so far as to
employ hidden Markov models and post processing
steps like pitch shifting (Schwarz, 2004).

• Audio Textures: Theory and Applications , provided
a more artistic use of MIR and concatetive sound
synthesis. In the paper the authors describe using a
sound similarity matrix on a small sample of music.
Then by using the small sample and its self similar-
ities they extract an audio texture. An audio texture
is a mini model of the sound which could be played
that represents the smaller sound but stretched over
a longer time (while still sounding similar). One use
of audio textures was to replace lost frames of audio
(Lu et al., 2004).

• Query-by-beatboxing, was about a technique to
query music by beatboxing (simulate beats with the
mouth). It was a good example of using other input
interfaces to provide query data (Kapur et al., 2004a).

• MATConcat, is a non-performance time concate-
tive sound synthesis engine implemented in Mat-lab.
Sturm uses the Hazel “Bush Chimp” example as a
benchmark. MATConcat is more of a graphical GUI
enabling the user to explore the mosaic more (Sturm,
2004) .

1.2 Contribution

My contribution is the ad-hoc testing and implementation
of certain kinds of stitching and overlapping techniques
used to produce mosaics for interactive use. As well as
providing information about the performance time use of
audio collage.

2 SYSTEM DESCRIPTION
Ostitch is an audio collager. It makes audio collages or
audio mosaics out of input signals based upon a corpus of
audio or the input signal itself.

There are 2 main sources of signal inputs to Ostitch,
one is through the sound-card whether it be CD, Line In,
or a microphone, the other is through files. Output can be
either or both file output and sound output.

User input can be directed into the system via the
command-line or remotely via the UDP port where “set-
ter” commands can be sent (it is one way communication).
UDP setter commands include commands that turn classi-
fiers on and off, start or stop recording commands. UDP
is used for an interface as GUIs can be created which is
decoupled from the running instrument process. UDP is
explicitly used for its connectionless and latency related
attributes.

Command-line options include sampling rate (-sr),
number of overlap chunks (-o), number of sam-
ples per block (-ol), FFT frame size (-fft),
which window to use as an envelope of the sam-
ples (-han, -ham, -black, -bart), and fea-
ture disabling options (-nozc, -norms, -noflux,
-noroll, -nocent).

File IO switches include input corpus (-i file),
save rendered output (-o outfile) , no recording to
the database (-norec), no sound output to the sound card
(-nosound).

FFT Mixers can be chosen using the following
switches: -lowpass,-hipass, -dither , -pass ,
-dither .

2.1 Usage Scenarios

Ostitch can be used for various purposes with various re-
sults, some of these scenarios include:

• Voice Replacement - Using a corpus of someone
else’s voice, the user speaks into a microphone. The
samples produced by the user are replaced by the
other person’s voice samples. This is very entertain-
ing if the other user is not of the same gender as the
user.

• Word Replacement - using a corpus of speech, the
user speaks into the microphone to have their speech
sounds replaced by speech sounds in the corpus. One
could produce poetry this way.

• Song Imitation - Uses the corpus of one song to im-
itate the other. This could be done with a musical
instrument – you could play music of another type
with the instrument you had. Other interesting uses

include taking a few songs by one artist and then pro-
viding a song for it to imitate (by the same artist or
not).

• Singing Music - With song imitation you can sing
into the microphone and hear music outputted, not
just vocals but actual music. For instance, blowing
into the microphone with a heavy metal corpus could
result in heavy guitars being played because the en-
ergy of blowing into a microphone and heavy metal
are pretty similar. Classical music is quite dynamic
and affords easy interaction with the human voice.

• Sequencing Synthesizer - If one was using a syn-
thesizer as input you could use various notes to
sequences samples from the corpus (assuming the
notes were consistent). Playing multiple notes at the
same time would access different samples rather than
the samples accessed by each note individually.

• Radio Exploration - using a radio as input, one can
change the output simply by changing radio stations.
Radio is a great source signal because it can provide
a changing and complex input signal ranging from
music to static to talk radio.

3 PROBLEMS
In this section I will discuss various problems that make
this research interesting and slightly different from other
sound mosaicers. Concatenation of sounds fragments and
the mixing of the sounds during concatenation will be re-
ferred to as stitching. Sample size refers the size of the
chunks of audio being mixed.

3.1 Performance Issues

With any kind of stitching, each kind of stitching sounds
different when different sized samples are used. If sam-
ples are small then the grains of sound are small, thus the
lower frequencies will be interrupted and often lost. If the
grains are large the source of the grain becomes more and
more obvious. The more obvious the source of a grain,
often the less enjoyable it is to hear. A medium size grain
seems more perceptually pleasing (at least to the author).

Overlapping is useful as it joins samples tighter to-
gether and allows for time domain or frequency domain
mixing. There are some caveats with overlapping. Over-
lapping can result in a pitch shifting of the sound, the pitch
usually increases. The less the overlap the less notice-
able the pitch shift. Although the less overlap the higher
chance of a popping sound. Overlapping samples of dif-
ferent size can produce much more musical results.

3.2 Simplified Overlapping Algorithm

A performance time overlapping algorithm with minimal
buffering was implemented (see figure 1). This algorithm
would have mix blocks (triangles) and blit blocks (rectan-
gles). Mix blocks would be mixed together using a mix-
ing algorithm while blit blocks would be copied verbatim.
Figure 1 demonstrates the overlapping algorithm based on

n number of blocks (number of blocks being the num-
ber of equally sized segments we cut our samples into)
. Each outlining rectangle indicates a block of time being
for playback. Samples starting on the left side are buffered
from the last call to the overlapper.

Mix indexes are important as the iterate the job of
the overlapper for the current time unit. Mix indexes are
decremented from n − 1 to 1 for cases where n >= 2

(where n is the number of blocks).
Note how the time units are numbered with mix in-

dexes from 0 to n − 1 where n is the number of blocks.
The first case is a special case so normally mix indexes
start at 1. Mix indexes are significant because a time unit
of mix index 1 implies that 2 samples plus the last sample
are needed to complete that frame (notice how for n = 2

all the frames have a mix index of 1). Also when the mix
index is 1 that implies there are 2 pairs mix blocks. When
a mix index is greater than 1 there is only 1 pair of mix
blocks. When a mix index is greater than 1, let m be the
mix index, the n − m to m − 1 blocks (zero indexed) of
the last buffer will be blitted into the output buffer, then
the m indexed block of the buffer will be mixed with with
the first block of the first supplied buffer. Then the n−m

blocks after the first block of the first new buffer will be
copied to the output buffer. If the mix index was 1, the last
block of the last buffer will be mixed with the first block
of the first new buffer, the middle n− 2 blocks of the new
buffer will be blitted to the output buffer and then the last
block of the new buffer will be mixed with the first block
of the second buffer. In this case the second buffer will be
copied as the lastbuffer for the next iteration.

The algorithm is described in point form below (as-
sume copying to the outbuffer is done in order as to avoid
indexing the outbuffer):

• let m be the current mix number

• let sample1, sample2 be the two chosen samples.

• let lastsample be the buffered samples from last time

• let outbuffer be the output buffer, the size of a sample

• if (n < 2) then

– copy sample1 to outbuffer

• else

– if (m = 1) then
∗ mix the last block of lastsample with the first

block of sample1 to outbuffer
∗ copy blocks 1 to n − 2 of sample1 to the

outbuffer if n > 2

∗ mix the last block of sample1 with the first
block of sample2 ot outbuffer

∗ copy sample2 to lastsample
– else

∗ copy blocks n − m to m − 1 of lastsample
to outbuffer

∗ mix blocks m of lastsample and 0 of sam-
ple1

∗ copy blocks 1 to n − m + 1 of sample1 to
outbuffer

2

3

4

5

1

0 0 0 0 0

1

1 1 1 1 1

2

1

2 1

1

3 2

1

3

1

4

3 2

1

3
Blit Block

Mix Block
Unit of time

Mix Index
5# blocks

Legend

Figure 1: Overlapper Algorithm

∗ copy sample1 to lastsample

m := (m - 1) modulus (n - 1) + 1

3.3 Time Domain Stitching

Time Domain stitching is the simplest form of stitching.
One can simple concatenate the time domain data in order
to stitch the data. Simple concatenation is problematic
because it can introduce pops or other extraneous noise.

Solutions for dealing with pops and noise are to win-
dow or envelope the samples using windows such as the
Hann window or a ADSR envelope. One problem with en-
veloping is that it can add other sounds, such as the sound
of the envelope. For examples if we have a block size of
1024 samples and a sampling rate of 44100 and we apply
a Hann window to each block, we will have produced an-
other mixed wave at around 43 hz. Of course that wave
could be canceled out but if we had a quiet signal holding
above 0 we would produce a time domain wave form that
looked like many concatenated Hann windows – a far cry
from silence.

We found that time domain wise overlapping worked
pretty well although one would have to mix the edges of
the sample to avoid popping. If there was too much of an
overlap (n = 2 or multiple samples played at the same
time which were similar) the pitch seems be shifted and it
sound like we were playing samples at double rate.

If random samples are chosen the pitch can be percep-
tually increased because there are not a lot of continuous
lower frequencies. This happens more if the edges of the
samples are mixed out.

There are multiple ways to mix time domain sound.
High pass and low pass filters, weighted averaging, dither-
ing are an example of a few. Figure 2 refers to FFT based
mixing but many of the examples are attributable to time
domain mixing as well.

3.4 FFT Based Overlapping and Stitching

FFT Based overlapping allows “filter” based overlapping.
Frames refer to blocks of data of the FFT size which are
subsections of samples. One difficultly with FFT overlap-
ping is if the FFT is too large and there aren’t enough over-
lapping frames the mixing algorithms won’t work well
and the mixing could be rather abrupt and harsh. Thus
one problem with FFT Based overlapping is that it can
easily bring in extra noise.

There are many kinds of ways to mix FFT frames; one
can simply sum FFT frames for more linear mixing (it
probably would have been computationally cheaper to use
linear mixing in the time domain). With access to the FFT
of frames it is very easy to apply a steep high and low-pass
filter to each frame and the summate the frames.

Another mixing type is dithering. Dithering is where
samples from each FFT are interlocked in a dithered pat-
tern. As the one FFT frame mixes more into the other, it
has a higher proportion of the FFT samples.

See figure 2 for a diagram of Fourier Transform Based
Mixers.

3.5 Collage

What collage consisted of was:

• Read in an input sample

• Normalize the samples

• Extract features from the sample:

– Zero Crossing Rate - The number of times the
time domain waveform crosses the y = 0 line.

– Flux - The amount of change from the last sam-
ple.

– Roll-off - A ratio of the low energy versus the
high energy.

– Centroid - The center of the distribution of en-
ergy.

– RMS - A measurement of average energy.

• Then find the nearest neighbors to that sample and
use those as input to the overlapper.

• Inserting the sample into the database (if recording
was on)

• Playing output

The parameters of the collager were the sampling rate,
the overlap chunks, the number of samples per “sample”
(sample refers to a block of audio read in), the FFT size,
and the envelope used for time domain stitching.

Similar chunks were found by using a nearest neigh-
bor algorithm with Euclidean distance (Mahalanobis dis-
tance was not used as it would require continuous recal-
culation of the covariance matrix – Mahalanobis distance
makes more sense to use on static corpuses).

The collager can be furthure parameterized by mod-
ifications to the chunk similarity algorithm, as it was
found during performance that sometimes inaccuracy in
the piece selection was musically more interesting than
high accuracy of selection.

4 IMPLEMENTATION
The tools used by Ostitch include (bold items indicate
that it is needed to run Ostitch):

• OCaml 3.0.8

• extLib - an OCaml library full of useful modules like
IO modules for dealing with other programs.

• swig - Swig was initially used to interface with
SNDLib but proved to be much too complex to be
useful.

• SNDLib - SNDLib is a creation of mine (currently
updated for this project) that plays audio out to
ALSA and allows reading audio from ALSA.

• OCaml C Bindings - are heavily used to bind
SNDLib to OCaml, this is probably the best way to
integrate C code with OCaml.

freq

time

freq

freq freq

freq

time

freq

Figure 2: From Left To Right, Top to Bottom: Low-pass mixer, Hi Pass Mixer, Bandpass Mixer, Smear Mixer, Big Dither
Mixer, Small Dither

• ALSA - Used to play audio. ALSA caused many
problems. Buffer overruns while writing out to the
sound card occurred frequently even this is a block-
ing interface! Overruns really shouldn’t occur if
blocking is provided.

• GNU Compiler Collection - GCC was used to com-
pile SNDLib and the UDP Client.

• GNU Make - GNU Make tracks dependencies and
compiles Ostitch.

• Perl and Tk - Perl and Tk were used to provide a
detachable GUI to Ostitch.

• Marsyas - Provided initial FFT code and some clas-
sifier code to Ostitch. Mainly acted as a reference
implementation.

• CSound - provided a reference for implementing
some feature

Most of the important functionality was written in
OCaml. C was used primarily to talk to ALSA and pro-
vide a STDIN to UDP client program. OCaml was chosen
because it is a functional, type-safe language who’s speed
rivals that of C . OCaml is an elegant and clear language
which made writing much of the code very easy and intu-
itive.

OCaml suffers from some debugging issues (such
as backtraces and clarity of compiler error messages).
OCaml also suffers from painfully poor syntax in regards
to floating point numbers (+ and - are for integers , +.
and *. are for floating point numbers). Other weird
OCaml related issues are the fact that OCaml does not use

native Ints or floats, extLib was required to allow OCaml
to read and write native types.

OCaml’s C integration is very nice and really consists
of includes full of type munging macros.

OCaml was appropriate for the project as the pro-
gram deals with audio which is stream based – audio fil-
ters are also usually recursively defined (OCaml supports
tail recursion). Unfortunately when I tried to use OCaml
with linked lists representing streams of sound I ran into
grave garbage collection problems, the program was eat-
ing memory very quickly. Due to this I had to switch to an
array/block based architecture which complicated things
a little bit. For instance it meant I had to use more state-
ments (rather than expressions) than I’d like to. I had to
be explicit about what was mutable and what wasn’t. Also
I couldn’t use functions like map because that would re-
quire making a new array. The program mostly relies on
static buffers, some functions will make their own buffers
(hidden by closures).

One challenge was importing an FFT into OCaml. I
did not want to use FFTW because I didn’t feel like mung-
ing around with FFTW types, I wanted to use types that
I could manipulate. So I ported the FFT from Marsyas.
Unfortunately when I attempted a reverse FFT the algo-
rithm would take an inconsiderate amount of CPU time.
A reverse FFT shouldn’t be that complex. So I ported
over a FFT I had written in Java (which was already array
bounds checked and somewhat statically typed). The new
FFT worked well, the most useful aspect of the new FFT
was that I had to explicitly provide output arrays for real
and imaginary values. Even more helpful was that reals
and imaginary values were separated into their own arrays

(a FFTData type was created to handle these 2 arrays
). In summary the FFT and porting the FFT to OCaml
caused no end of trouble. I was able to re-implement the
FFT without using references or mutables (except for the
arrays which have mutable values).

SNDLib was a C library I had built to gain ALSA
sound output. I modified it a bit to allow for OCaml in-
tegration and to enable it to read sound as well. SNDLib
was wrapped in the Sndcaml module to provide an inter-
face to SNDLib within OCaml.

Commlib is a module I wrote which enables remote
control of a program via commands sent to a UDP port
that Commlib listens on. This style of interaction is very
nice as you can run one continuous instance of a GUI and
Ostitch can be stopped and restarted. Unfortunately this
does not lend to very good feedback inside of the GUI.
Perl and TK were used to provide a simple GUI to Os-
titch.

Audio is a module which contains miscellaneous au-
dio functions. These functions include windowing algo-
rithms, feature extractors like zero crossings, RMS etc,
euclidean distance, flux, overlappers, and numerous array
utility functions like arrayapplyi which is like a in
place map, array2fold which folds 2 arrays into one
scalar value, arrayfoldi which folds 1 array into one
scalar value but provides the indices of the values being
folded.

Findarg is a simple module much like getopt but much
much simpler, it supports flags and string based input from
the command-line.

Ostitch calls upon all these and the overlapper to pro-
duce a usable system. One of the difficulties of Ostitch
was to provide near real-time performance. Issues arise in
the size of the buffers, not overflowing the output buffer
and scheduling the reading in of samples while outputting
samples at the same time. Some buffering inside the over-
lapper were needed to deal with the fact that samples were
consumed at a faster rate than they were read or played at.
Of course buffering is always an issue when doing any sort
of audio programming.

5 CONCLUSIONS
In summary it is hard to tell how well certain aspects of the
project work because most of the project is so perceptual.
Artistically Ostitch seems to have merit, it is quite fun to
scream into a microphone as heavy metal samples replace
your screaming.

For live performance I think this instrument is a suc-
cess. I plan to use it to perform music at the next Victoria
Noise Festival, and I gave a small demo in front of George
Tzanitakis’s MIR class. With corpus pre-loading,one can
have predetermined music sets without worrying about
training.

Lessons learned from the instrument are to be weary
of overlapping and sample size. Bother of these param-
eters can increase the perceived pitch of audio. Small
sample sizes sound noisy and poppy, they don’t provide
any hooks into real audio. Medium sized samples provide
some coherency while still being separate from the audio
they were extracted from.

5.1 Future Work

There are many future directions one can take.
One direction would be useful would be to implement

some perceptual metrics based on MOS (Mean Opinion
Score) or at least attempt to model MOS. I would like to
test the quality of the various parameters against users or
at least models of users.

5.1.1 Stitching

There are various kinds of Stitching that could be ex-
plored.

For sample selection, edge metrics might be useful
where you match the start and end of the sample to infer a
more smooth transition.

Non-linear mixing would also be appropriate such as
logarithmic scaling of the audio in the time domain.

A good question to evaluate is “Do we need samples
to be played at a consistent time, can we play samples at
any time?”. It might be the case that the proposed algo-
rithm was not as good as say randomly layering samples
at various start times.

Different mixing techniques should be evaluated as
well. Maybe convolving the audio might produce a nicer
transition between samples.

5.1.2 Collage

Other directions for audio collage that should be evaluated
include:

• Modify the samples - use time warping and pitch
shifting to modify and layer samples for overlap-
ping. Time stretching and folding would allow for
the lower frequencies to be better represented. This
has been done to a certain extent already.

• Multi-length chunks - chunks of audio should not be
as discrete as they currently are, one should be able to
grab an arbitrary chunk out of the database and start
layering on top of the current sounds.

• More Features - more features should be extracted
to allow for more accurate sample retrieval (this has
been done already elsewhere). It would be good to
evaluate the expense of certain features and whether
or not they contribute to the accuracy of the chooser.

• Feature Selection Parameters - there should be pa-
rameters such as jitter and “nth best choice” which
allow for and emphasize error in sample choice.

• Sample fairness - weight samples so that the least fre-
quently used samples get choosen as well.

5.1.3 Applications of MIR to Performance

In the more general case of using MIR to performance
there are some areas that others or I should evaluate:

• Features as instrument parameters - would the output
of a zero crossing, flux or centroid be appropriate in-
put for an FM synthesizer? How quickly do these pa-
rameters change? What the properties of change and
thus how appropriate are some of these features for
controlling the parameters of other instruments. Can

we have parameters which map well to the source?
Pitch tracker has been done quite a lot in the com-
puter music arean.

• Natural Mappings of voice features to music - The
voice is very versatile and very controllable it would
be helpful to effectively exploit the voice further, es-
pecially for using a microphone as interface to an in-
strument.

• Audience Based Measures - There should be some
exploration of audience measurement or audience
interaction with MIR. Audience interaction seems
to mostly consist of aggregates and direction (e.g.
which group in the audience is the loudest etc).

References
Steven Hazel. Soundmosaic.

http://thalassocracy.org/soundmosaic/, 2001.

Reynald Hoskinson. Manipulation and resynthesis with
natural grains. Master’s thesis, University of British
Columbia, 2002.

A. Kapur, M.Benning, and G. Tzanetakis. Query-by-
beatboxing: music retrieval for the dj. In Proc. Int.
Conf. on Music Information Retrieval (ISMIR), 2004a.

A. Kapur, G. Tzanetakis, and P.F. Driessen. Audio-based
gesture extraction on the esitar controller. In Proceed-
ings of the International Conference on Digital Audio
Effects, pages 17–21, October 2004b.

Ari Lazier and Perry Cook. Mosievius: Feature driven
interactive audio mosaicing. In DAFX 2003, 2003.

Lie Lu, Liu WenYin, and Hong-Jiang Zhang. Audio tex-
tures: Theory and applications. In IEEE Trans. on
Speech and Audio Processing, volume 12, pages 156–
167. Institute of Electrical and Electronics Engineers,
Inc., March 2004.

John Oswald. Plunderphonics.
http://www.plunderphonics.com, 1999. URL
http://www.plunderphonics.com/. Last
accessed April 2005.

Diemo Schwarz. Data-Driven Concatenative Sound Syn-
thesis. PhD thesis, Universit Pari, January 2004.

Bob L. Sturm. Matconcat: An application for exploring:
Concatenative sound synthesis using matlab. In ICMC
2004, 2004.

George Tzanetakis. Manipulation, Analysis and Retrieval
Systems for Audio Signal. PhD thesis, Princeton, 2002.

A. Zils and F Pachet. Musical mosaicing. In Proceedings
of DAFX 01. University of Limerick, December 2001.

