
The 90 minute
Scheme to C compiler

Marc Feeley

page 1



Goals
• Goals

• explain how Scheme can be compiled to C
• give enough detail to “do it at home”
• do it in 90 minutes

• Non-goals

• RnRS compatibility, C interoperability, etc
• optimizations, performance, etc
• explain optimizations, Gambit-C, etc

• Target audience

• people who know Scheme/Lisp
• helps to know higher-order functionspage 2



Why is it difficult?
• Scheme has, and C does not have

• tail-calls a.k.a. tail-recursion opt.
• first-class continuations
• closures of indefinite extent
• automatic memory management i.e. GC

• Implications

• can’t translate (all) Scheme calls into C calls
• have to implement continuations
• have to implement closures
• have to organize things to allow GC

• The rest is easy!page 3



Tail-calls and GC
• In Scheme, this function runs in constant

space, regardless of the value of n (and
ignoring the space for the numbers computed)

(define f
(lambda (n x)
(if (= n 0)

(car x)
(f (- n 1)

(cons (cdr x)
(+ (car x)

(cdr x)))))))

(f 20 (cons 1 1)) ; => 10946

• recursive call is a tail call i.e. f is a loop

• unused pairs are reclaimed by the GC
page 4



Closures (1)
• In Scheme functions can be nested and

variables are lexically scoped
(define add-all
(lambda (n lst)
(map (lambda (x) (+ x n)) lst)))

(add-all 1 ’(10 20 30)) ; => (11 21 31)

(add-all 5 ’(10 20 30)) ; => (15 25 35)

• In the body of (lambda (x) (+ x n))

• x is a bound occurrence of x
• n is a free occurrence of n

• A variable bound in the closest enclosing
lambda-expression = a slot of the current
activation frame (easy)

page 5



Closures (2)
• Closures may also outlive their parent

(define make-adder
(lambda (n)
(lambda (x) (+ x n))))

(map (make-adder 1)
’(10 20 30)) ; => (11 21 31)

• Traditional (contiguous) stack allocation of
activation frames will not work

• A closure must “remember” the parent closure’s
activation frame and the GC must reclaim the
activation frames only when they are not
required anymore

page 6



First-class continuations (1)
• First-class continuations allow arbitrary transfer

of control

• A continuation denotes a suspended
computation that is awaiting a value

• For example, when this program is run at the
REPL

> (sqrt (+ (read) 1))

the program will wait at the call to read for the
user to enter an number.
The continuation of the call to read denotes a
computation that takes a value, adds 1 to it,
computes its square-root, prints the result and
goes to the next REPL interaction.

page 7



First-class continuations (2)
• call/cc turns the continuation into a function

which, when called, causes that suspended
computation to resume

• In (call/cc f), the function f will be called
with the continuation
> (sqrt (+ (call/cc

(lambda (cont)
(* 2 (cont 8))))

1))
3

• With first-class continuations it is easy to do:
backtracking , coroutining , multithreading ,
non-local escapes (for exception handling)

page 8



First-class continuations (3)
• Example 1: non-local escape

(define (map-/ lst)
(call/cc
(lambda (return)
(map (lambda (x)

(if (= x 0)
(return #f)
(/ 1 x)))

lst))))

(map-/ ’(1 2 3)) ; => (1 1/2 1/3)

(map-/ ’(1 0 3)) ; => #f

page 9



First-class continuations (4)
• Example 2: backtracking

• We want to find X, Y and Z such that
2 <= X,Y, Z <= 9 and X2 = Y 2 + Z2

(let ((x (in-range 2 9))
(y (in-range 2 9))
(z (in-range 2 9)))

(if (= (* x x)
(+ (* y y) (* z z)))

(list x y z)
(fail))) ; => (5 3 4)

• What is the definition of in-range and fail?

page 10



First-class continuations (5)
(define fail
(lambda () (error "no solution")))

(define in-range
(lambda (a b)
(call/cc
(lambda (cont)

(enumerate a b cont)))))

(define enumerate
(lambda (a b cont)
(if (> a b)

(fail)
(let ((save fail))
(set! fail
(lambda ()
(set! fail save)
(enumerate (+ a 1) b cont)))

(cont a)))))

page 11



Approach to compiling
Scheme to C

• We use source-to-source transformations to
do most of the compilation work

• A source-to-source transformation is a
compiler whose input and output are in the
same language , in this case Scheme

• The output of the transformations will be “easier
to compile” than the input (i.e. there will be less
reliance on powerful features)

• The final Scheme code will be straightforward
to translate to C

• Two source-to-source transformations:
closure-conversion and CPS-conversionpage 12



Scheme subset
• To highlight the difficult aspects of compiling

Scheme, only a subset of Scheme is handled
by the compiler:

• Very few primitives (+, -, *, =, <, display
(for integers only), and call/cc)

• Only small exact integers and functions (and
#f=0/#t=1)

• Only the main special forms and no macros
• set! only to global variables
• No variable-arity functions
• No error checking

• Exercise: implement the rest of Scheme...
page 13



Closure-conversion (1)
• The problem: access to free variables

(lambda (x y z)
(let ((f (lambda (a b)

(+ (* a x) (* b y)))))
(- (f 1 2) (f 3 4))))

• How are the values of x and y obtained in the
body of f?

page 14



Closure-conversion (2)
• First idea: pass the values of the free-variables

as parameters
(lambda (x y z)
(let ((f (lambda (x y a b)

(+ (* a x) (* b y)))))
(- (f x y 1 2) (f x y 3 4))))

• This transformation, known as lambda lifting
works well in this case, but not in general:
(lambda (x y z)
(let ((f (lambda (a b)

(+ (* a x) (* b y)))))
f))

• The values of the free-variables have to be
packaged into an object which also gives the
function’s code: the closurepage 15



Closure-conversion (3)
• Second idea: build a structure containing the

free-variables and pass it to the function as a
parameter when the function is called
(lambda (x y z)
(let ((f (vector

(lambda (self a b)
(+ (* a (vector-ref self 1))

(* b (vector-ref self 2))))
x
y)))

(- ((vector-ref f 0) f 1 2)
((vector-ref f 0) f 3 4))))

• Eliminates free-variables

• Each lambda-expression now denotes a block
of instructions (just like in C)

page 16



Closure-conversion rules
• (lambda (P1 . . . Pn) E) =

(vector (lambda (self P1 . . . Pn) E ) v . . .)

where v. . . is the list of free-variables of
(lambda (P1 . . . Pn) E)

• v = (vector-ref self i)

where v is a free-variable and i is the position of v in the
list of free-variables of the enclosing lambda-expression

• (f E1 . . . En) = ((vector-ref f 0) f E1 . . . En )

NOTE: this is valid when f is a variable and this will be
the case after CPS-conversion, except when
f=(lambda...) which is handled specially

• Use closure and closure-ref for dynamic typing
page 17



CPS-conversion (1)
• The problem: continuations have

• indefinite extent (because of call/cc)
• can be invoked more than once

(X2 = Y 2 + Z2 example)

• Continuations can’t be reclaimed when a
function returns

• The GC has to be responsible for reclaiming
continuations

• “Simple” solution: transform the program so
that continuations are objects explicitly
manipulated by the program (closures) and let
the GC deal with those

page 18



CPS-conversion (2)
• Basic idea of CPS-conversion

• The evaluation of an expression produces a
value that is consumed by the continuation

• If we represent the continuation with a
function we can use function call to express
“sending a value to the continuation”

page 19



CPS-conversion (3)
• For example in the program

(let ((square (lambda (x) (* x x))))
(write (+ (square 10) 1)))

the continuation of (square 10) is a
computation that expects a value that it will add
one to and then write

• That continuation is represented with the
function

(lambda (r) (write (+ r 1)))

page 20



CPS-conversion (4)
• This continuation needs to be passed to
square so that it can send the result to it
(CPS=Continuation-Passing Style )

• So we must add a continuation parameter to all
lambda-expressions, change the function calls
to pass the continuation function, and use the
continuation when a function needs to return a
result

(let ((square (lambda (k x) (k (* x x)))))
(square (lambda (r) (write (+ r 1)))

10))

page 21



CPS-conversion (5)
• Notice that tail-calls can be expressed simply

by passing the current continuation to the called
function

• For example
(let ((mult (lambda (a b) (* a b))))
(let ((square (lambda (x) (mult x x))))
(write (+ (square 10) 1))))

becomes
(let ((mult (lambda (k a b) (k (* a b)))))
(let ((square (lambda (k x) (mult k x x))))
(square (lambda (r) (write (+ r 1)))

10)))

because the call to mult in square is a
tail-call , mult has the same continuation as
square

page 22



CPS-conversion (6)
• When the CPS-conversion is done

systematically on all the program

• all function calls become tail-calls a

• non-tail-calls create a closure for the
continuation of the call

• The function calls can simply be translated to
“jumps”

acalls to primitive operations like + and vector are not considered to be func-

tion calls

page 23



CPS-conversion rules (1)
• We define the notation

E
C

to mean the Scheme expression that is the
CPS-conversion of the Scheme expression E

where the Scheme expression C represents E’s
continuation

• Note that E is a source expression (it may
contain non-tail-calls) and C is an expression in
CPS form (it contains tail-calls only)

• C is either a variable or a lambda-expressionpage 24



CPS-conversion rules (2)
• The first rule is

program = program
(lambda (r) (%halt r))

It says that the primordial continuation of the
program takes r, the result of the program, and
calls the primitive operation (%halt r) which
terminates the execution a

ain the actual compiler it also displays the result

page 25



CPS-conversion rules (3)
• c

C

= (C c)

• v
C

= (C v)

• (set! v E1)
C

= E1

(lambda (r1)
(C (set! v r1)))

• (if E1 E2 E3)
C

= E1

(lambda (r1)
(if r1 E2

C

E3

C

))
page 26



CPS-conversion rules (4)
• (begin E1 E2)

C

= E1

(lambda (r1) E2

C

)

• (+ E1 E2)
C

=

E1

(lambda (r1) E2

(lambda (r2) (C (+ r1 r2)))
)

• (lambda (P1 . . . Pn) E0)
C

=

(C (lambda (k P1 . . . Pn) E0

k

))

page 27



CPS-conversion rules (5)
• (E0)

C

= E0

(lambda (r0) (r0 C))

• (E0 E1)
C

= E0

(lambda (r0) E1

(lambda (r1) (r0 C r1))
)

• (E0 E1 E2)

C

=

E0

(lambda (r0) E1

(lambda (r1) E2

(lambda (r2) (r0 C r1 r2))
)

)

• etc.
page 28



CPS-conversion rules (6)
• ((lambda () E0))

C

= E0

C

• ((lambda (P1) E0) E1)
C

= E1

(lambda (P1) E0

C

)

• ((lambda (P1 P2) E0) E1 E2)
C

=

E1

(lambda (P1) E2

(lambda (P2) E0

C

)

)

• etc.page 29



What about call/cc?
• In CPS form, call/cc is simply

(define call/cc
(lambda (k f)
(f k (lambda (dummy-k result)

(k result)))))

• The CPS-converter adds this definition to the
CPS-converted program if call/cc is used

page 30



Compiler structure
• Less than 800 lines of Scheme

• Does

• Parsing and expansion of forms (e.g. let)
• CPS-conversion
• Closure-conversion
• C code generation

• Runtime has

• One heap section (and currently no GC!)
• A table of global variables
• A small stack for parameters, local variables

and primitive expression evaluation
page 31



Example
----------------- SOURCE CODE:

(define square
(lambda (x)
(* x x)))

(+ (square 5) 1)

----------------- AST:

(begin
(set! square (lambda (x.1) (%* x.1 x.1)))
(%+ (square 5) 1))

----------------- AST AFTER CPS-CONVERSION:

(let ((r.5 (lambda (k.6 x.1)
(k.6 (%* x.1 x.1)))))

(let ((r.3 (set! square r.5)))
(square (lambda (r.4)

(let ((r.2 (%+ r.4 1)))
(%halt r.2)))

5)))page 32



Example (cont)
----------------- AST AFTER CPS-CONVERSION:

(let ((r.5 (lambda (k.6 x.1)
(k.6 (%* x.1 x.1)))))

(let ((r.3 (set! square r.5)))
(square (lambda (r.4)

(let ((r.2 (%+ r.4 1)))
(%halt r.2)))

5)))

----------------- AST AFTER CLOSURE-CONVERSION:

(lambda ()
(let ((r.5 (%closure

(lambda (self.7 k.6 x.1)
((%closure-ref k.6 0)
k.6
(%* x.1 x.1))))))

(let ((r.3 (set! square r.5)))
((%closure-ref square 0)
square
(%closure
(lambda (self.8 r.4)

(let ((r.2 (%+ r.4 1)))
(%halt r.2))))

5))))

page 33



Example (cont)
----------------- C CODE:

case 0: /* (lambda () (let ((r.5 (%closure (lambda (self.7 k.6 x.1) ...

BEGIN_CLOSURE(1,0); END_CLOSURE(1,0);
PUSH(LOCAL(0/*r.5*/)); GLOBAL(0/*square*/) = TOS();
PUSH(GLOBAL(0/*square*/));
BEGIN_CLOSURE(2,0); END_CLOSURE(2,0);
PUSH(INT2OBJ(5));
BEGIN_JUMP(3); PUSH(LOCAL(2)); PUSH(LOCAL(3)); PUSH(LOCAL(4)); END_JUMP(3);

case 2: /* (lambda (self.8 r.4) (let ((r.2 (%+ r.4 1))) (%halt r.2)))

PUSH(LOCAL(1/*r.4*/)); PUSH(INT2OBJ(1)); ADD();
PUSH(LOCAL(2/*r.2*/)); HALT();

case 1: /* (lambda (self.7 k.6 x.1) ((%closure-ref k.6 0) k.6 (%* x....

PUSH(LOCAL(1/*k.6*/));
PUSH(LOCAL(2/*x.1*/)); PUSH(LOCAL(2/*x.1*/)); MUL();
BEGIN_JUMP(2); PUSH(LOCAL(3)); PUSH(LOCAL(4)); END_JUMP(2);

page 34



Conclusion
• Powerful transformations:

• CPS-conversion
• Closure-conversion

• Performance is not so bad with NO
optimizations (about 6 times slower than
Gambit-C with full optimization)

• Many improvements are possible...

page 35


	
	Goals
	Why is it difficult?
	Tail-calls and GC
	Closures (1)
	Closures (2)
	First-class continuations (1)
	First-class continuations (2)
	First-class continuations (3)
	First-class continuations (4)
	First-class continuations (5)
	Approach to compiling Scheme to C
	Scheme subset
	Closure-conversion (1)
	Closure-conversion (2)
	Closure-conversion (3)
	Closure-conversion rules
	CPS-conversion (1)
	CPS-conversion (2)
	CPS-conversion (3)
	CPS-conversion (4)
	CPS-conversion (5)
	CPS-conversion (6)
	CPS-conversion rules (1)
	CPS-conversion rules (2)
	CPS-conversion rules (3)
	CPS-conversion rules (4)
	CPS-conversion rules (5)
	CPS-conversion rules (6)
	What about {	t call/cc}?
	Compiler structure
	Example
	Example (cont)
	Example (cont)
	Conclusion

