The 90 minute Scheme to C compiler

Marc Feeley

Université de Montréal
Goals

• Goals
 • explain how Scheme can be compiled to C
 • give enough detail to “do it at home”
 • do it in 90 minutes

• Non-goals
 • RnRS compatibility, C interoperability, etc
 • optimizations, performance, etc
 • explain optimizations, Gambit-C, etc

• Target audience
 • people who know Scheme/Lisp
 • helps to know higher-order functions
Why is it difficult?

- Scheme has, and C does not have
 - tail-calls a.k.a. tail-recursion opt.
 - first-class continuations
 - closures of indefinite extent
 - automatic memory management i.e. GC

- Implications
 - can’t translate (all) Scheme calls into C calls
 - have to implement continuations
 - have to implement closures
 - have to organize things to allow GC

- The rest is easy!
Tail-calls and GC

- In Scheme, this function runs in constant space, regardless of the value of \(n \) (and ignoring the space for the numbers computed)

```scheme
(define f
  (lambda (n x)
    (if (= n 0)
      (car x)
      (f (- n 1)
        (cons (cdr x)
          (+ (car x)
            (cdr x)))))))

(f 20 (cons 1 1)) ; => 10946
```

- recursive call is a tail call i.e. \(f \) is a loop

- unused pairs are reclaimed by the GC
Closures (1)

- In Scheme functions can be nested and variables are lexically scoped

```
(define add-all
  (lambda (n lst)
    (map (lambda (x) (+ x n)) lst)))
```

```
(add-all 1 '(10 20 30)) ; => (11 21 31)
(add-all 5 '(10 20 30)) ; => (15 25 35)
```

- In the body of `(lambda (x) (+ x n))`
 - `x` is a *bound* occurrence of `x`
 - `n` is a *free* occurrence of `n`

- A variable bound in the closest enclosing `lambda`-expression = a slot of the current activation frame (easy)
Closures (2)

- Closures may also outlive their parent

```
(define make-adder
  (lambda (n)
    (lambda (x) (+ x n)))))

(map (make-adder 1)
     '(10 20 30)) => (11 21 31)
```

- Traditional (contiguous) stack allocation of activation frames will not work

- A closure must “remember” the parent closure’s activation frame and the GC must reclaim the activation frames only when they are not required anymore
• First-class continuations allow arbitrary transfer of control

• A ***continuation*** denotes a suspended computation that is awaiting a value

• For example, when this program is run at the REPL

 \[> \ (\sqrt{\ (+\ (\text{read})\ 1)}) \]

 the program will wait at the call to \texttt{read} for the user to enter an number.

 The continuation of the call to \texttt{read} denotes a computation that takes a value, adds 1 to it, computes its square-root, prints the result and goes to the next REPL interaction.
First-class continuations (2)

- `call/cc` turns the continuation into a function which, when called, causes that suspended computation to resume.

- In `(call/cc f)`, the function `f` will be called with the continuation:

  ```
  > (sqrt (+ (call/cc
            (lambda (cont)
               (* 2 (cont 8))))
            1))
  3
  ```

- With first-class continuations it is easy to do: backtracking, coroutining, multithreading, non-local escapes (for exception handling)
First-class continuations (3)

- Example 1: non-local escape

```scheme
(define (map-/ lst)
  (call/cc
   (lambda (return)
     (map (lambda (x)
           (if (= x 0)
               (return #f)
               (/ 1 x))
           lst)))))

(map-/ '(1 2 3)) ; => (1 1/2 1/3)
(map-/ '(1 0 3)) ; => #f
```
Example 2: backtracking

We want to find X, Y and Z such that $2 \leq X, Y, Z \leq 9$ and $X^2 = Y^2 + Z^2$

```lisp
(let ((x (in-range 2 9))
      (y (in-range 2 9))
      (z (in-range 2 9)))
  (if (= (* x x)
         (+ (* y y) (* z z)))
      (list x y z)
      (fail)))) ; => (5 3 4)
```

What is the definition of `in-range` and `fail`?
(define fail
 (lambda () (error "no solution")))

(define in-range
 (lambda (a b)
 (call/cc
 (lambda (cont)
 (enumerate a b cont)))))

(define enumerate
 (lambda (a b cont)
 (if (> a b)
 (fail)
 (let ((save fail))
 (set! fail save)
 (enumerate (+ a 1) b cont))))

page 11
Approach to compiling Scheme to C

- We use **source-to-source** transformations to do most of the compilation work.

- A **source-to-source** transformation is a compiler whose input and output are in the **same language**, in this case Scheme.

- The output of the transformations will be “easier to compile” than the input (i.e. there will be less reliance on powerful features).

- The final Scheme code will be straightforward to translate to C.

- Two source-to-source transformations: **closure-conversion** and **CPS-conversion**.
Scheme subset

- To highlight the difficult aspects of compiling Scheme, only a subset of Scheme is handled by the compiler:
 - Very few primitives (+, -, *, =, <, display (for integers only), and call/cc)
 - Only small exact integers and functions (and #f=0/#t=1)
 - Only the main special forms and no macros
 - set! only to global variables
 - No variable-arity functions
 - No error checking

- Exercise: implement the rest of Scheme...
Closure-conversion (1)

- The problem: access to free variables

\[
(l\ lambda\ (x\ y\ z)
 (let\ ((f\ (l\ am\ a\ b)
 (+\ (*\ a\ x)\ (*\ b\ y))))
 (-\ (f\ 1\ 2)\ (f\ 3\ 4))))
\]

- How are the values of \(x\) and \(y\) obtained in the body of \(f\)?
First idea: pass the values of the free-variables as parameters

\[
\text{(lambda (x y z)}
\text{(let ((f (lambda (x y a b)}
\text{(+ (* a x) (* b y)))})
\text{(- (f x y 1 2) (f x y 3 4))}))}
\]

This transformation, known as lambda lifting works well in this case, but not in general:

\[
\text{(lambda (x y z)}
\text{(let ((f (lambda (a b)}
\text{(+ (* a x) (* b y)))})
\text{f}))}
\]

The values of the free-variables have to be packaged into an object which also gives the function’s code: the closure
Closure-conversion (3)

- Second idea: build a structure containing the free-variables and pass it to the function as a parameter when the function is called

```
(lambda (x y z)
  (let ((f (vector
        (lambda (self a b)
          (+ (* a (vector-ref self 1))
              (* b (vector-ref self 2)))
        x
        y)))
    (- ((vector-ref f 0) f 1 2)
       ((vector-ref f 0) f 3 4))))
```

- Eliminates free-variables
- Each `lambda`-expression now denotes a block of instructions (just like in C)
Closure-conversion rules

- \[
\text{(lambda } (P_1 \ldots P_n) \ E) = \\
\text{(vector } \text{(lambda } (\text{self } P_1 \ldots P_n) \ E) \text{)} \ v \ldots)
\]

where \(v \ldots \) is the list of free-variables of
\[
\text{(lambda } (P_1 \ldots P_n) \ E)
\]

- \[
\text{v} = \text{(vector-ref self i)}
\]

where \(v \) is a free-variable and \(i \) is the position of \(v \) in the list of free-variables of the enclosing lambda-expression

- \[
\text{(f E_1 \ldots E_n)} = \text{((vector-ref f 0) f E_1 \ldots E_n)}
\]

NOTE: this is valid when \(f \) is a variable and this will be the case after CPS-conversion, except when \(f = \text{(lambda \ldots)} \) which is handled specially

- Use closure and closure-ref for dynamic typing
CPS-conversion (1)

- The problem: continuations have
 - indefinite extent (because of \texttt{call/cc})
 - can be invoked more than once
 \((X^2 = Y^2 + Z^2\) example)

- Continuations can’t be reclaimed when a function returns

- The GC has to be responsible for reclaiming continuations

- “Simple” solution: transform the program so that continuations are objects explicitly manipulated by the program (closures) and let the GC deal with those
CPS-conversion (2)

- Basic idea of CPS-conversion
 - The evaluation of an expression produces a value that is consumed by the continuation
 - If we represent the continuation with a function we can use function call to express “sending a value to the continuation”
CPS-conversion (3)

- For example in the program

```lisp
(let ((square (lambda (x) (* x x))))
  (write (+ (square 10) 1)))
```

the continuation of `square 10` is a computation that expects a value that it will add one to and then write

- That continuation is represented with the function

```lisp
(lambda (r) (write (+ r 1)))
```
This continuation needs to be passed to \texttt{square} so that it can send the result to it (CPS=Continuation-Passing Style)

So we must add a continuation parameter to all \texttt{lambda}-expressions, change the function calls to pass the continuation function, and use the continuation when a function needs to return a result

\begin{verbatim}
(let ((square (lambda (k x) (k (* x x)))))
 (square (lambda (r) (write (+ r 1)))
 10))
\end{verbatim}
Notice that tail-calls can be expressed simply by passing the current continuation to the called function.

For example

(let ((mult (lambda (a b) (* a b))))
 (let ((square (lambda (x) (mult x x))))
 (write (+ (square 10) 1)))))

becomes

(let ((mult (lambda (k a b) (k (* a b))))
 (let ((square (lambda (k x) (mult k x x))))
 (square (lambda (r) (write (+ r 1))))
 10)))

because the call to \texttt{mult} in \texttt{square} is a \textbf{tail-call}, \texttt{mult} has the \textbf{same continuation} as \texttt{square}.
CPS-conversion (6)

- When the CPS-conversion is done systematically on all the program
 - all function calls become tail-calls
 - non-tail-calls create a closure for the continuation of the call

- The function calls can simply be translated to "jumps"

\[a\text{calls to primitive operations like } + \text{ and vector are not considered to be function calls}\]
CPS-conversion rules (1)

- We define the notation \(\boxed{E} \)

 \[
 \frac{E}{C}
 \]

 to mean the Scheme expression that is the CPS-conversion of the Scheme expression \(E \) where the Scheme expression \(C \) represents \(E \)'s continuation.

- Note that \(E \) is a source expression (it may contain non-tail-calls) and \(C \) is an expression in CPS form (it contains tail-calls only).

- \(C \) is either a variable or a \texttt{lambda-expression}.
CPS-conversion rules (2)

• The first rule is

\[
\text{program} = \text{program} \ (\lambda (r) (\%\text{halt} \ r))
\]

It says that the **primordial continuation** of the program takes \(r \), the result of the program, and calls the primitive operation \((\%\text{halt} \ r)\) which terminates the execution.

\[^{a}\text{in the actual compiler it also displays the result} \]
CPS-conversion rules (3)

- \[\boxed{c} = (C \ c) \]
- \[\boxed{v} = (C \ v) \]
- \[(\text{set! } v \ E_1) = \begin{array}{c} E_1 \\ C \\ \end{array} \hspace{1cm} (\text{lambda } (r_1) \\ (C \ (\text{set! } v \ r_1))) \]
- \[(\text{if } E_1 \ E_2 \ E_3) = \begin{array}{c} E_1 \\ C \\ \end{array} \hspace{1cm} (\text{lambda } (r_1) \\ (\text{if } r_1 \begin{array}{c} E_2 \\ C \\ \end{array} \begin{array}{c} E_3 \\ C \\ \end{array}))) \]
CPS-conversion rules (4)

- \((\text{begin } E_1 E_2)\) = \(E_1\) \(\text{C} \ (\lambda (r_1) E_2\) \(\text{C}\)

- \((+ E_1 E_2)\) = \(E_1\) \(\text{C}\) \((\lambda (r_1) E_2\) \(\text{C}\) \((\lambda (r_2) (\text{C} (+ r_1 r_2))\))

- \((\lambda (P_1 \ldots P_n) E_0)\) = \(\text{C}\) \((\text{C} (\lambda (k P_1 \ldots P_n) E_0))\)
CPS-conversion rules (5)

- \((E_0) = \begin{array}{l}
E_0 \\
C
\end{array}
\)
 \(\text{lambda } (r_0) \ (r_0 \ C)\)

- \((E_0 \ E_1) = \begin{array}{l}
E_0 \\
C
\end{array}
\)
 \(\text{lambda } (r_0) \\
E_1
\)
 \(\text{lambda } (r_1) \ (r_0 \ C \ r_1)\)

- \((E_0 \ E_1 \ E_2) = \begin{array}{l}
E_0 \\
C
\end{array}
\)
 \(\text{lambda } (r_0) \\
E_1 \\
E_2
\)
 \(\text{lambda } (r_1) \ (r_0 \ C \ r_1)\)
 \(\text{lambda } (r_2) \ (r_0 \ C \ r_1 \ r_2)\)

- etc.
CPS-conversion rules (6)

\[
\begin{align*}
((\lambda (\cdot)E_0)) & = E_0 \\
((\lambda (P_1)E_0)E_1) & = (\lambda (P_1)E_0)E_1 \quad (\lambda (P_1)E_0)C \\
((\lambda (P_1 P_2)E_0)E_1 E_2) & = (\lambda (P_1)E_2) \quad (\lambda (P_2)E_0)C \\
\end{align*}
\]

etc.
What about \texttt{call/cc}?

- In CPS form, \texttt{call/cc} is simply

\begin{verbatim}
(define call/cc
 (lambda (k f)
 (f k (lambda (dummy-k result)
 (k result))))))
\end{verbatim}

- The CPS-converter adds this definition to the CPS-converted program if \texttt{call/cc} is used.
Compiler structure

- Less than 800 lines of Scheme
- Does
 - Parsing and expansion of forms (e.g. `let`)
 - CPS-conversion
 - Closure-conversion
 - C code generation
- Runtime has
 - One heap section (and currently no GC!)
 - A table of global variables
 - A small stack for parameters, local variables and primitive expression evaluation
Example

------------------ SOURCE CODE:

(define square
 (lambda (x)
 (* x x)))

(+ (square 5) 1)

------------------ AST:

(begin
 (set! square (lambda (x.1) (%* x.1 x.1)))
 (%+ (square 5) 1))

------------------ AST AFTER CPS-CONVERSION:

(let ((r.5 (lambda (k.6 x.1)
 (k.6 (%* x.1 x.1))))
 (let ((r.3 (set! square r.5)))
 (square (lambda (r.4)
 (let ((r.2 (%+ r.4 1))
 (%halt r.2)))
 5))))
Example (cont)

----------------- AST AFTER CPS-CONVERSION:

(let ((r.5 (lambda (k.6 x.1)
 (k.6 (%* x.1 x.1)))))
 (let ((r.3 (set! square r.5)))
 (square (lambda (r.4)
 (let ((r.2 (%+ r.4 1)))
 (%halt r.2))
 5)))

----------------- AST AFTER CLOSURE-CONVERSION:

(lambda ()
 (let ((r.5 (%closure
 (lambda (self.7 k.6 x.1)
 ((%closure-ref k.6 0)
 k.6
 (%* x.1 x.1)))))
 (let ((r.3 (set! square r.5)))
 ((%closure-ref square 0)
 square
 (%closure
 (lambda (self.8 r.4)
 (let ((r.2 (%+ r.4 1)))
 (%halt r.2))
 5)))))

Example (cont)

----------------- C CODE:

```c
case 0: /* (lambda () (let ((r.5 (%closure (lambda (self.7 k.6 x.1) .

BEGIN_CLOSURE(1,0); END_CLOSURE(1,0);
PUSH(LOCAL(0/*r.5*/)); GLOBAL(0/*square*/) = TOS();
PUSH(GLOBAL(0/*square*/));
BEGIN_CLOSURE(2,0); END_CLOSURE(2,0);
PUSH(INT2OBJ(5));
BEGIN_JUMP(3); PUSH(LOCAL(2)); PUSH(LOCAL(3)); PUSH(LOCAL(4)); END_JUMP(3);

``` case 2: /* (lambda (self.8 r.4) (let ((r.2 (%+ r.4 1))) (%halt r.2)))

```c
PUSH(LOCAL(1/*r.4*/)); PUSH(INT2OBJ(1)); ADD();
PUSH(LOCAL(2/*r.2*/)); HALT();
```

```c
case 1: /* (lambda (self.7 k.6 x.1) ((%closure-ref k.6 0) k.6 (%* x....

``` PUSH(LOCAL(1/*k.6*/));
PUSH(LOCAL(2/*x.1*/)); PUSH(LOCAL(2/*x.1*/)); MUL();
BEGIN_JUMP(2); PUSH(LOCAL(3)); PUSH(LOCAL(4)); END_JUMP(2);```
Conclusion

- Powerful transformations:
 - CPS-conversion
 - Closure-conversion

- Performance is not so bad with NO optimizations (about 6 times slower than Gambit-C with full optimization)

- Many improvements are possible...