The 90 minute
Scheme to C compiler

Marc Feeley

Université f'”\

de Montréal

page 1

‘”‘ Goals

® Goals

e explain how Scheme can be compiled to C
e give enough detall to “do it at home”
e do it in 90 minutes

® Non-goals

e RnRS compatiblility, C interoperability, etc
e optimizations, performance, etc
e explain optimizations, Gambit-C, etc

® Target audience

e people who know Scheme/Lisp
g ® helps to know higher-order functions

f”\ Why Is it difficult?

® Scheme has, and C does not have

e tail-calls a.k.a. tail-recursion opt.

e first-class continuations

e closures of indefinite extent

e automatic memory management I.e. GC

® |mplications

e can't translate (all) Scheme calls into C calls
® have to implement continuations

¢ have to implement closures

® have to organize things to allow GC

page 3 ® The rest is easy!

‘”‘ Tall-calls and GC

® |[n Scheme, this function runs in constant
space, regardless of the value of n (and
Ignoring the space for the numbers computed)
(define f
(Il anbda (n x§
n 0
r X
E- n 1)
C

(i f
L

cdr Xg))))))
(f 20 (cons 1 1)) ; => 10946

ca
f

® recursive call is a tail call l.e. f Is aloop

page 4

® unused pairs are reclaimed by the GC

f”\ Closures (1)

® |n Scheme functions can be nested and
variables are lexically scoped

(defi ne add-all
(l anbda (n | st)

(map (lanbda (x) (+ x n)) Ist)))
(add-all 1 (10 20 30)) ; => (11 21 31)
(add-all 5 (10 20 30)) ; => (15 25 35)

® Inthe body of (| anbda (x) (+ x n))

® X IS a bound occurrence of x
® N IS a free occurrence of n

e A variable bound in the closest enclosing

| anbda-expression = a slot of the current
activation frame (easy)

page 5

fpﬂ Closures (2)

® Closures may also outlive their parent

(defi ne make- adder
(I anbda (n)
(lambda (x) (+ x n))))

(map (nake-adder 1)
(10 20 30)) ; => (11 21 31)

® Traditional (contiguous) stack allocation of
activation frames will not work

® A closure must “remember” the parent closure’s
activation frame and the GC must reclaim the
activation frames only when they are not
required anymore

page 6

First-class continuations (1)

page 7

® First-class continuations allow arbitrary transfer
of control

® A continuation denotes a suspended
computation that is awaiting a value

® For example, when this program is run at the
REPL

> (sqrt (+ (read) 1))

the program will wait at the call to r ead for the
user to enter an number.

The continuation of the call to r ead denotes a
computation that takes a value, adds 1 to It,
computes its square-root, prints the result and
aoes to the next REPL interaction.

f”\ First-class continuations (2)

® cal | / cc turns the continuation into a function
which, when called, causes that suspended
computation to resume

® In(call/cc f),the function f will be called
with the continuation

> (sqrt (+ (call/cc
(| anbda (cont)
(* 2 (cont 3))))

1
2))

e With first-class continuations it is easy to do:
backtracking , coroutining , multithreading
non-local escapes (for exception handling)

page 8

fpn First-class continuations (3)

® Example 1: non-local escape

(define (map-/ |st)
(call/cc
(|l anbda (return)
(map (I anmbda (x)
(1f (= x 0)
return #f)
/1 x)))

I'st))))
(map-/ "(1 2 3)) ; => (1 1/2 1/3)
(map-/ (1 0 3)) ; => #

page 9

rpn First-class continuations (4)

e Example 2: backtracking

e We want to find X, Y and Z such that
2<=XY,Z <=9and X*=Y?+ Z?

(let ((x (In-range 2 9
y (I n-range 2 9
Z (In-range 2 9)))
(1f (= (* X x)
(+ (P Yy (*z2))
|1 st X y Z
fail))) ; => (5 3 4)

® What Is the definition of i n-range and fai | ?

page 10

fpn First-class continuations (5)

(define fail _
(lanbda () (error "no solution")))

(d?{iﬂgdinzragge
anbda (a
(call/cc
(I anbda (cont)
(enunerate a b cont)))))

(defi ne enunerate
(l anbda (a b cont)

(if (> a b)
fail)
let ((save fail))
(set! fail
(| anbda §)_
set! fail save)
enuner?te (+ al) b cont)))

(cont a))))

page 11

.#. Approach to compiling

Scheme to C

® \We use source-to-source transformations to
do most of the complilation work

® A source-to-source transformation is a
compiler whose input and output are in the
same language , In this case Scheme

® The output of the transformations will be “easier
to compile” than the input (i.e. there will be less
reliance on powerful features)

® The final Scheme code will be straightforward
to translate to C

® Two source-to-source transformations:
age 12 closure-conversion and CPS-conversion

’p“ Scheme subset

® To highlight the difficult aspects of compiling
Scheme, only a subset of Scheme Is handled
by the compiller:

e \Very few primitives (+, -, *, =, <, di spl ay
(for integers only), and cal | / cc)

e Only small exact integers and functions (and
#t =0/#t =1)

e Only the main special forms and no macros

e set! only to global variables

e No variable-arity functions

e No error checking

page 13

® Exercise: implement the rest of Scheme...

f”\ Closure-conversion (1)

® The problem: access to free variables

(| anbda 2)(y 2Z)
(et (i Tl 2 ¢« b v)))
12y ()

® How are the values of x and y obtained in the
body of f ?

page 14

fpﬂ Closure-conversion (2)

® First idea: pass the values of the free-variables
as parameters

(Iarrbdag y 2Z)
(let ((f (Ian‘oda (x 3/ a b

o oxy Ly (kY a4}

® This transformatlon, known as lambda lifting
works well in this case, but not in general:

(Ianbdag y 2)
(let ((f (Iarrbda(a D)
) (+ (* ax) (" by)))))

® The values of the free-variables have to be
packaged into an object which also gives the
Page 15 function’s code: the closure

fpn Closure-conversion (3)

® Second idea: build a structure containing the
free-variables and pass it to the function as a
parameter when the function is called

| anbd
(?Ieta(g? {vé%tor
(| anbda
(+ (2

(self a b)
a 2vector-ref sel f 1;;,
b (vector-ref self 2)))

X
(- vec¥%22ref f 0) f 12
ggvector-ref f Og f 3 43)))

® Eliminates free-variables

® Each | anbda-expression now denotes a block
of instructions (just like in C)

page 16

Closure-conversion rules

page 17

® (lanbda (P ...P,) FE) |=
(vector (lanbda (self P,...P,) |E|) [v]..)

where v. ..I1s the list of free-variables of
(lambda (P~ ...P,) E)

® (v|=(vector-ref self i)
where v Is a free-variable and ¢ is the position of v in the
list of free-variables of the enclosing | anbda-expression

® \(f E1...E,) |=((vector-ref [f|0) |f||E1]|.|E,)
NOTE: this is valid when f is a variable and this will be
the case after CPS-conversion, except when
f=(1 anbda. . .) which is handled specially

® Use cl osure and cl osur e-ref for dynamic typing

fpﬂ CPS-conversion (1)

® The problem: continuations have
¢ Indefinite extent (because of cal | / cc)

e can be invoked more than once
(X? =Y?+ Z% example)

e Continuations can't be reclaimed when a
function returns

® The GC has to be responsible for reclaiming
continuations

® “Simple” solution: transform the program so
that continuations are objects explicitly
manipulated by the program (closures) and let
the GC deal with those

page 18

f”\ CPS-conversion (2)

® Basic idea of CPS-conversion

e The evaluation of an expression produces a
value that is consumed by the continuation

e |f we represent the continuation with a
function we can use function call to express
“sending a value to the continuation”

page 19

fpﬂ CPS-conversion (3)

® For example in the program

I | anbd *
R ST 5)

the continuation of (square 10) Is a
computation that expects a value that it will add
one to and then write

® That continuation is represented with the
function

(lanmbda (r) (wite (+r 1)))

page 20

f”\ CPS-conversion (4)

® This continuation needs to be passed to
squar e so that it can send the result to it
(CPS=Continuation-Passing Style)

® So we must add a continuation parameter to all
| anbda-expressions, change the function calls
to pass the continuation function, and use the
continuation when a function needs to return a
result

I | anbd K K (*
(?Eqﬁéfgu‘i‘{iwédi (5 turite (+r 1))

0))

page 21

f”\ CPS-conversion (5)

® Notice that tail-calls can be expressed simply
by passing the current continuation to the called
function

® For example

(Ielt g(rrult (Ian‘oldanég b) (
(?mmfggq?ir?sgugre ?nga

*a

(rru
))))
becomes

I I | anbd k b k (* b
(?Iteg(?l(Jsaugrg (Ignﬁ)daagk)é (grulf1 k)2<)2<g)j
(squar e SI anbda (r) (wite (+r 1)))

0)))

because the calltonul t insquare isa
— tail-call , mul t has the same continuation as
cdtiar e

fpﬂ CPS-conversion (6)

® \When the CPS-conversion Is done
systematically on all the program
e all function calls become tail-calls 2

e non-tail-calls create a closure for the
continuation of the call

® The function calls can simply be translated to
HjumpS”

calls to primitive operations like + and Vect or are not considered to be func-

tion calls

page 23

fpﬂ CPS-conversion rules (1)

® \We define the notation

E
C

to mean the Scheme expression that is the
CPS-conversion of the Scheme expression £
where the Scheme expression C represents £’S
continuation

® Note that £ Is a source expression (it may
contain non-tail-calls) and C is an expression in
CPS form (it contains tail-calls only)

a4 ® C iIs either a variable or a | anbda-expression

fpﬂ CPS-conversion rules (2)

® The first rule Is

program | = program

(lambda (r) (%alt r))

It says that the primordial continuation of the
program takes r, the result of the program, and
calls the primitive operation (%nal t) which
terminates the execution ?

%in the actual compiler it also displays the result

page 25

f”\ CPS-conversion rules (3)

=(C ¢

C
C

=(C v)

v
C

® (Set! v El) Eq
C (| anbda ()
(C (set! v r)))

o (If Ey By E3)|= Fr
C (I ambda (7y)
(1t r |Ea| |E3)))
page 26 C C

r”'n CPS-conversion rules (4)

® |[(begin E; EY) |= Eq
C (I anbda () [FEs))
C
®(+ B E) |=
C
5]
(I anbda () o)

(lambda (r2) (C (+ 71 72)))

® ((lanbda (P...P,) Ep) |=
C
(C (lanbda (k Pi...P,) |Ey))

page 27

CPS-conversion rules (5)

page 28

® \(Eo) |= Ey
C (lanbda (rg) (0 C))

® (Ey Ey) |= Ey

C (I ambda (ro)))
(lambda (7r1) (rg C 71))

® (Ey E1 E»)
C

(I anbda () Er)

(I ambda () Fo)
(Iarrbda (7“2) (7"0 C T1 7“2))

f”\ CPS-conversion rules (6)

® [((lanmbda () Eo)) |=|Eo
C C
® |(((lambda (P1) Ep) Ev) |= Fr
C (1 ambda (Py)[E)

® | ((lambda (P P) Eo) Ei Ej)

C

Eq
(1 anbda (P) Es)
(l anbda ()| Ep)

page 29 ® etc.

f”‘ What about cal |l / cc?

® In CPS form, cal | / cc Is simply

(define call/cc
(|l anbda (k f)

(f k (lanbda (du -k result)
N1))

(k result

® The CPS-converter adds this definition to the
CPS-converted program if cal | / cc Is used

page 30

f”\ Compiler structure

® Less than 800 lines of Scheme

® Does

e Parsing and expansion of forms (e.g. | et)
e CPS-conversion

e Closure-conversion

e C code generation

® Runtime has

® One heap section (and currently no GC!)
e A table of global variables

e A small stack for parameters, local variables
and primitive expression evaluation

page 31

f”\ Example

(defi ne square
UaMMa(Q

(* X X))
(+ (square 5) 1)

(begitnl | anbd 1) (% x.1 Xx.1
235 (53333265§ ?)) a OG0 L x- 1))

................. AST AFTER CPS- CONVERSI ON:

(let ((r.5 (lanbda (k.6 x.1)
k.6 (% x.1 x.1))
(let ((r.3 (set! square r.5
(square (lanbda (r.4)
(let ((r.2 (% r.4 1)))
(alt r.2)))
page 32 5)))

f”\ Example (cont)

................. AST AFTER CPS- CONVERSI ON:

(let ((r.5 (Ianbda p<6 X. 1)
k.6 (% x.1 x.1))
(let ((r.3 gset' square r. 5;;;
(ealien ('aFE?a(ér'z % r.4 1)))
((%alt r.2)))

5)))
................. AST AFTER CLOSURE- CONVERSI ON:

(1 anbda ()
(let ((r.5 (%l osure
(l anbda (self.7 k.6 x.1)
((@%Iosure ref k.6 0)

(let ((r.3 (ses/fljc éqaa?elz)%ggg

((%! osure-ref square 0)
squar e

(%l osure
(1 anrbda 2self 8 r.4)
(l?&halt r. %?)r 2
5))))

page 33

f”\ Example (cont)

case 0: /* (lanmbda () (let ((r.5 (%l osure (lanbda (self.7 k.6 x.1)

BEG N CLOSURE(1, 0); END CLOSURE5 1, 0);

PUSH(LOCAL(0/ *r.5*/)); GLOBAL(O/*square*/) = TOS();

PUSH(GLOBAL(0/ *square*/));

BEG N_CLOSU E&Z, 0); END CLOSURE(2, 0);

PUSH(I NT20BJ(5)) ;

BEG N JUMP(3); PUSH(LOCAL(2)); PUSH(LOCAL(3)); PUSH(LOCAL(4)); END J

case 2: /* (lanbda (self.8 r.4) (let ((r.2 (% r.4 1))) (Yalt r.2)))

S LG Tr 410)) B NT2CR(1)); ADDO)

case 1: /* (lanbda (self.7 k.6 x.1) ((%l osure-ref k.6 0) k.6 (% x..

PUSHE LOCAL(1/ *K. 6*/ 3
© PUSH(LOCAL(2/ *x. 1*/)) ;

PUSH(LOCAL(2/ *x. 1*/ g I\/ULE));
(LOCAL(3)): PUSH(LOCAL(4)): END JUWP(2);:

BEG N_JUMP(2); PUS

page 34

‘p“ Conclusion

e Powerful transformations:
e CPS-conversion
e Closure-conversion

® Performance is not so bad with NO
optimizations (about 6 times slower than
Gambit-C with full optimization)

® Many improvements are possible...

page 35

	
	Goals
	Why is it difficult?
	Tail-calls and GC
	Closures (1)
	Closures (2)
	First-class continuations (1)
	First-class continuations (2)
	First-class continuations (3)
	First-class continuations (4)
	First-class continuations (5)
	Approach to compiling Scheme to C
	Scheme subset
	Closure-conversion (1)
	Closure-conversion (2)
	Closure-conversion (3)
	Closure-conversion rules
	CPS-conversion (1)
	CPS-conversion (2)
	CPS-conversion (3)
	CPS-conversion (4)
	CPS-conversion (5)
	CPS-conversion (6)
	CPS-conversion rules (1)
	CPS-conversion rules (2)
	CPS-conversion rules (3)
	CPS-conversion rules (4)
	CPS-conversion rules (5)
	CPS-conversion rules (6)
	What about {	t call/cc}?
	Compiler structure
	Example
	Example (cont)
	Example (cont)
	Conclusion

